

12th INTERNATIONAL SCIENTIFIC CONFERENCE ON PRODUCTION ENGINEERING –CIM2009
Croatian Association of Production Engineering, Zagreb 2009

IMPLEMENTATION OF A LINUX-BASED CNC OPEN CONTROL SYSTEM

Tomislav Staroveški, Danko Brezak, Toma Udiljak, Dubravko Majetić

T. Staroveski, dip.ing., University of Zagreb, FSB, I. Lucica 5, 10000 Zagreb

Dr.sc. D. Brezak, University of Zagreb, FSB, I. Lucica 5, 10000 Zagreb

Prof.dr.sc. T. Udiljak, University of Zagreb, FSB, I. Lucica 5, 10000 Zagreb

Prof.dr.sc. D. Majetic, University of Zagreb, FSB, I. Lucica 5, 10000 Zagreb

Keywords: Open Control Systems, Enhanced
Machine Control, Real-Time Linux

Abstract
This paper presents a utilization of a Linux based
open architecture control system (OAC) as a CNC
solution for the mini milling testbed platform. The
characteristics of the chosen OAC solution, testbed
structure, and implementation details are briefly
depicted. Finally, main conclusions and future
research work are summarized.

1. INTRODUCTION

In the last two decades, a lot of efforts have
been made in the development of open control
systems for machine tools. They were recognized
as a solution to machine tool and control
manufacturers endeavors to elaborate common
concepts, develop basic technologies and to
produce basic components together, in order to
fulfill continuous demands for higher machine tool
functionality and flexibility, product quality and
costs reduction [1]. According to the IEEE, “an
open system provides capabilities that enabled
properly implemented applications to run on a
variety of platforms from multiple vendors,
interoperate with other system applications and
present a consistent style of interaction with the
user ” (IEEE 1003.0). This means that, Open
Architecture Controller (OAC) has to be flexible in
hardware and software, for all control levels, i.e.
must be standardized in the sense of integration
with other control systems and permit the
integration of independent application program
modules, control algorithms, sensors and computer
hardware developed by different manufacturers [2].
With the ability of implementation and integration of
customer-specific controls by means of open
interfaces and configuration methods, their
implementation is particularly important in the
development of reconfigurable manufacturing
systems [3].

The first OAC solution was proposed by
National Institute of Standards and Technology
(NIST). This project has evolved over time, and is

currently focused on the development of open
architecture control system named as Enhanced
Motion Controller [4]. After this first initiative,
several other projects have started in the Europe,
USA and Japan, among which the most important
are [5]:

 OSACA (Open System Architecture for
Controls within Automation System),

 OMAC (Open Modular Architecture
Controllers),

 OSEC (Open System Environment for
Controller),

 JOP (Japanese Open Promotion Group).
These projects were initiated and supported by
different machine tool makers, control and software
vendors, system integrators, end users and
academics. Beside aforementioned, other
university research activities in hardware and
software area of open architecture CNC systems
were also conducted and resulted in systems such
as Open Real-Time Operating System (ORTS) [6]
or Soft-CNC system based on OSACA principle.
However, despite all of these efforts, a universal
open CNC architecture still remains undefined.
Moreover, according to [5], open control systems
that are available today mostly offer the possibility
for modifications in the non-real-time environment
in a fixed software topology. They also lack the
necessary flexibility and are not based on vendor-
neutral standards.

In this paper, a concise description of activities
regarding the implementation of open architecture
controller for the 3-axis bench-top mini milling
machine is presented. This project was motivated
by the necessity for open controlled machine tool
testbed platform, intended to be used in the
analysis of different control algorithms and process
monitoring techniques, as well as educational
purposes.

Among several proposed OAC solutions,
Enhanced Machine Controller (EMC) was
implemented. EMC runs on Linux based operating
systems with real-time extensions. Characteristics
of such software platforms, which primarily include
stability and performance, were main reasons for

CIM2009 June, 17-20, 2009 Biograd, Croatia

 210

choosing this type of OAC. Up to this time, EMC
has been successfully used in a several CNC
retrofitting projects, including applications with
complex kinematic chains [7].

2. EMC OVERVIEW

First version of EMC was originally developed
by the Intelligent Systems Division at the (NIST),
an agency of the Commerce Department of the
United States government [8]. Resulting work from
efforts to produce motion control package as a test
platform for concepts and standards remained in
the public domain and EMC quickly gained
attention among open source community.

Current EMC version (EMC2) [9] is actively
developed and community maintained software
package, presenting an effort to simplify, organize
and continuously extent the original work.

Most significant advances in the later versions
of EMC, discussed in this paper, feature
introduction of Hardware Abstraction Layer (HAL)
greatly simplifying interface to the control
hardware, major code optimizations as well as
extended support for implementation on variety of
different machines with complex kinematic
structures.

HAL provides both means of transferring real-
time data from EMC to control hardware or other
lower-level software modules, and the framework
for development of hardware drivers and software
modules for execution in real-time [10].

Code optimizations include replacement of
Real-time Control Systems Library (RCSLib) [11]
with optimized version, the Neutral Message
Language Library (NMLLib) [12]. Both of these
libraries provide support for implementation of
Neutral Messaging Language (NML) [13], which is
communication method implemented within
different EMC modules.

Real-time extensions to Linux kernel are
required for normal EMC operation, although it is
possible to run EMC in a non real-time environment
for simulation purposes, without interfacing actual
hardware.

Support currently exists for Linux kernel
versions 2.4 and 2.6 with real-time extensions
applied by either RTAI [14] or RT-Linux [15]
patches. Experimental versions of EMC are also
built for 64-bit kernels.

2.1 Architecture of EMC

EMC is composed from four components:
 Motion Controller (EMCMOT),
 Discrete I/O Controller (EMCIO),
 Task coordinating module (EMCTASK),
 Text-based and graphical user interfaces

(GUI).
In the four modules of EMC, only EMCMOT is a

realtime module. The communications between
non-realtime modules are implemented by NML
channels, and the communications between the

realtime module (EMCMOT) and the non-realtime
module (EMCTASK) is implemented etither by
shared memory or RT-Linux FIFO mechanisms
[16]. Figure 1 illustrates architecture of EMC.

Figure 1. EMC Architecture

2.2 Motion controller (EMCMOT)
EMCMOT is executed cyclically in real-time and

performs trajectory planning, direct and inverse
kinematic calculations and computation of desired
output to motor control subsystems, as shown in
figures 1, 2 and 3. This process includes sampling
of controlled axis positions, computation of next
trajectory point and interpolation between these

June, 17-20, 2009 Biograd, Croatia CIM2009

 211

trajectory points. Interpolation is done by means of
cubic interpolation routines, and a trapezoidal
velocity profile generator is used during
computation of desired position references [17].
Programmable software limits are also supported,
as well as interfaces to hardware limit and home
switches. Figure 2 shows EMCMOT structure in
greather detail.

Figure 2. EMCMOT Structure

Supported modes of operation are individual axis
jogging (continuous, incremental, absolute),
queued blended moves for linear and generalized
circular motion, as well as programmable forward
and inverse kinematics.

Complex kinematics for robots can be coded in
C language, according to a prescribed function
interface and linked in to replace the default 3-axis
Cartesian machine kinematics routines.

Parameters, such as number and type of axes
(e.g., linear or rotary), scale factors between
feedback devices (e.g., encoder counts), maximal
velocity and acceleration values, axis units (e.g.,
millimeters) and trajectory planning cycle times are

obtained from configuration file during system
initialization phase.

Shared memory or FIFO mechanisms are used
to receive commands or send status, error, or
logging information to user space modules. NML is
not used directly by the motion controller since
NML requires C++ and the motion controller coding
was limited to C in order to provide generic
structure and maximize portability to other real-time
operating systems.

EMCMOT interacts with the subordinate
realtime modules, such as PID compensation
algorithms and other hardware drivers using HAL
signals. Figures 1, 2 and 3 also show HAL layer,
situated between the EMCMOT, EMCIO and the
actual machine hardware.

Using provided application programming
interface (API) for EMCMOT, specific hardware
support can be integrated into the EMC in the form
of HAL modules, without modifying any of the core
control code.

For servo systems, the output is typically based
on a PID compensation algorithm, provided in the
form of separate HAL module. PID controller
structures include zero, first, and second order
feedforward gains as well as maximum following
error output. In a typical machine configuration,
number of PID controllers usually corresponds to
the number of controlled axis. For stepper systems,
the calculations typically run open-loop, and step
generator, also written as HAL module, is used to
sent pulses to the stepper motor drives.

This modular structure allows implementation of
different compensation algorithms. HAL concepts
are discussed in greather detail in the next section.

2.3 Discrete I/O controller (EMCIO)

All I/O functions, which are not directly related to
the actual motion of machine axis, are handled
within EMCIO module (shown in the middle right on
Figure 1). EMCIO is implemented as a single I/O
controller, consisting of hierarchy of subordinate
controllers for main spindle, automatic tool change
(ATC), coolant, auxiliary functions (e.g., E-STOP
chain, lubrication, etc.) and other user-defined
subsystems. It is based on a hierarchy controller
classes written in C++ using NMLLib.

Since discrete I/O controller design is typically
highly machine-specific, customization in general is
not intended by single configuration file, used to
configure the more generic EMCMOT. Instead,
configuration is written in the form of single or
multiple HAL files, each describing required
application I/O interface, or particular subsystem.
These configuration files contain declarations of
various HAL modules to be used, as well as HAL
signals, by means of which module
interconnections are described.

Each instantiated module is visible in HAL as
black box, consisting of HAL pins, defined as inputs
or outputs. Module interconnections are defined

CIM2009 June, 17-20, 2009 Biograd, Croatia

 212

using signals of same type as corresponding
module pins (e.g., binary, float, signed or unsigned
integer). References to HAL configuration files are
then included in main configuration file to be read
during system startup.

Most of previously mentioned subsystems are
already pre-configured in EMC, but can easily be
adopted or left unutilized, leaving only a subset that
fits application needs. In addition, support for
writing custom user-defined subsystems is
provided either by means of integrated
Programmable Logic Controller module (PLC) [18],
or by utilizing specialized tool for writing HAL
modules called comp. PLC is configured during
system setup, using ladder logic diagrams within
specialized GUI, while comp is used to build,
compile and install HAL modules from source code.

2.4 Task executor (EMCTASK)

EMCTASK is task level command handler and
program interpreter for the RS-274 NGC machine
tool programming language [19], commonly
referred as G code. As coordinating module in the
architecture of EMC, EMCTASK is hierarchically
placed above EMCMOT and EMCIO, and under
GUI, as shown in Figure 1.

EMCTASK monitors the status of subordinate
modules (EMCMOT and EMCIO) and coordinates
them. It also receives and analyzes the commands,
either from the operator through GUI or from
another process (locally or remotely in both cases),
interprets them into NML messages and dispatches
them to EMCMOT, EMCIO or EMCTASK itself at
appropriate times. The actual commands, written in
the form of G and M code programs, can be sent to
EMCTASK using the Machine Device Interface
(MDI) mode or as a file when the machine is in
Auto mode.

EMCTASK is coded similarly to the EMCIO
using the NMLLib. As interpreter for G and M code
programs, whose coding does not vary significantly
between machines, it is less machine specific than
the EMCIO.

2.5 User interfaces

Several user interfaces have been developed
for EMC: keystick, xemc, tkemc, mini and AXIS. All
of these programs natively run under Linux based
operating systems and all run in X11 environment
(X Window System), with exception of keystick,
which is character-based. AXIS is the most
advanced GUI, featuring interactive G-code
previewer.

GUI-based programs can be expanded and
adopted to match specific application needs by
means of virtual control panels (VCP), which is
supported with pyVCP package. Besides above
mentioned user interfaces, telnet based program

emcrsh is also provided for running remote
sessions.

Multiple GUIs can be run simultaneously, either
locally or remotely, across multiple networked
computers. Several possibilities are presented for
remote connection: utilization of X11 protocol, VNC
connection, or running GUIs natively on remote
computer.

In the first case, GUI runs on the main PC, and
the keyboard, mouse and GUI window are
forwarded to the remote PC. Installation of X server
software on remote computer is required for X11
connection such as Xming for Microsoft Windows™
operating systems [20].

VNC connection is remote desktop system,
transfering control of main PC to remote PC. X11
and VNC connections can be tunneled over Secure
Sockets Layer (SSL), in order to provide network
security during sessions (X11 over SSL, VNC over
SSL).

In the third case, GUI programs run nativley on
remote PCs and communicate with main PC by
exchanging NML messages over the network. This
configuration requires modification of configuration
files on the main PC (adding appropriate remote IP
adresses fields in NML configuration files). All of
above mentiond GUIs will work in this configuration
under Linux-based operating systems. Tkemc and
mini can be run under Mac OS-X™ or Microsoft
Windows™ platforms, if Tcl/Tk programming
language, in which these GUIs are coded, has
been installed.

Several GUIs are also provided as tools for
configuration and tuning during machine setup in
real-time. These include ClassicLadder, used for
graphical editing of ladder logic diagrams;
HALConfig, which is a tool for testing and
parameterization of machine configuration;
HALScope, which is software oscilloscope for
monitoring HAL signals and HALMeter, which is a
simple tool for monitoring individual HAL signals.

Additional GUI packages are also being
developed, that will provide support for graphical
building of HAL configurations and machine motion
visualization.

3. TESTBED SETUP

At present, 3-axis bench-top mini milling
machine is used as testbed. Although this machine
is based on very simple Cartesian kinematics
structure, it is still nevertheless sufficient for testing
most of EMC concepts and overall system stability.

Figure 3 illustrates detailed configuration of HAL
for presented testbed, as well as essential wiring
schematics for feed drives. Each controlled axis
with corresponding drive and HAL signals is
denoted by i, where i = [X,Y,Z]. Allocated hardware
I/O ports are denoted by n.

June, 17-20, 2009 Biograd, Croatia CIM2009

 213

Figure 3. HAL configuration for testbed

Configuration of feed drives, which applies to all
axis, is based on closed-loop servo system, by
means of Permanent Magnet Synchronous Motors
(PMSM) with integrated incremental encoders,
corresponding motor controllers and ball screw
assemblies. Basic technical information for test bed
is presented in Table 1, while detailed technical
information for the selected motors, type SB04A
manufactured by Mecapion Co., can be found in
[21].

Table 1. Technical characteristics for feed drives
 Rating Units

Motor rated power 0,4 kW
Motor rated torque 1,27 Nm
Max inst. motor torque 3,822 Nm
Motor rated speed 3000 rpm
Maximum motor speed 5000 rpm
Encoder resolution 3000 p/rev
Ball screw pitch 5 mm/rev
Axis X length 300 mm
Axis Y length 400 mm
Axis Z length 55 mm

Digital servo controllers type DPCANIE-

030A400 are used for driving X and Y axis motors,
while DPCANIE-060A400 is used for driving Z axis
motor [22].

Selected drives provide multiple modes of
operation (closed loop control of position, velocity
or torque, as well as encoder-following for
electronic gearing), variety of common industrial
interfaces for acquisition of reference signals
(±10V, PWM+Direction, STEP+Direction), CAN-
bus interface with CANOpen protocol for fieldbus
connections, as well as multiple general purpose
analog and digital I/O ports. Diverse interface
possibilities make these drives practical choice for
both industrial and research purposes.

Selection of particular types (DPCANIE-
030A400, DPCANIE-060A400) is a temporary
solution and only serves for initial testing, as power
ratings greatly exceed application needs.
Presented drives were originally obtained for other
ongoing project and will be shortly replaced with
more suitable drives from same manufacturer,
regarding adequate power ratings, and with same
interface possibilities.

In the current setup, feed drives are configured
as closed loop velocity controllers, since position
loop for each axis is implemented within EMCMOT
module, discussed in previous sections. PID gain
factors for both current and velocity loops are
obtained manually, using royalty-free DriveWare
configuration software package [23].

Interface to drives from PC side is done via
Motenc-Lite PCI card [24]. With all breakout boards
installed, single Motenc-Lite card features 8 Analog
Outputs (Range ±10V, 13-Bit Resolution), 8 Analog
Inputs (Range ±5V, 14-bit Resolution), 4
Differential Quadrature Encoder Inputs (DQEI), as
well as 16 digital outputs (24VDC) and 32 digital
inputs (24VDC). DQEI interface is mapped to
internal 32-bit up/down counter with maximum
update frequency of 2MHz. Multiple installations
(up to four) of this card is possible in order to
further expand configuration.

Incremental encoders, which are powered from
motor drives and utilize differential quadrature TTL
output signals, are used as feedback devices for
both drives and EMC. Signals from encoder are
first fed to the motor drive as velocity loop

CIM2009 June, 17-20, 2009 Biograd, Croatia

 214

feedback, buffered, and then sent to EMC trough
DQEI channels of Motenc-Lite interface card.
Emulated Hall Effect sensor signals are also
provided from encoders, which are used by the
drives for commutation.

Signals from DQEI channels provide resolution
of less than 0.417 µm in EMC for given ball screw
pitch of 5 mm/rev. Velocity reference signal of
±10V is fed to the drives from Motenc-Lite DAC
channels using a constant of 300 rpm/V.

Minimal hardware IO pin allocation requirement
per controlled axis also includes Fault input for
drive fault detection, Enable output for enabling
drive power stage, as well as limit & home switch
inputs.

Testbed in its current configuration is shown on
figure 4. Figures 5 and 6 show more detailed views
of servo controllers and mechanical design. AXIS,
one of EMC GUIs is shown in figure 7. Finally,
Figures 8 and 9 show machining results and
finished parts of several initial test runs,
respectively.

Figure 4. Testbed system

Figure 5. Servo controllers

Figure 6. 3-axis mini milling machine

Figure 7. AXIS, one of EMC GUI modules

Figure 8. Machining results

June, 17-20, 2009 Biograd, Croatia CIM2009

 215

Figure 9. Finished parts

4. CONCLUSION

Implementation of EMC, a Linux based OAC
system on 3-axis mini milling machine testbed has
been presented in this paper. Although current
testbed setup in this work cannot be used to
present full potential of this approach, some key
features can be emphasized.

Due to stability and robustness in general, Linux
based operating systems have already proved their
potential in many fields, including industrial
automation. Combined with real time extensions,
they also provide possibilities for mission critical
implementations.

EMC can be considered of great academic and
educational importance, as it fulfills essential
research demands for this field with benefits of
robust open source OS, including expansion
possibilities with other open-source programs.

Significant potential for commercial applications
has allready been proven by several retrofitting
projects, including systems with complex
kinematics. It is important to note that complete
software sollution based on this approach is
entirely royalty-free. However, GPL and LGPL
licence restrictions must be taken into account prior
to any commercial considerations.

Lack of device driver support from most
hardware vendors for Linux based operating
systems with real time extensions, especially
regarding industrial fieldbus communication
interfaces, can be considered main disadvantage
of this approach. However, compatible hardware
interfaces for both servo and stepper systems exist
and are actively developed by several
manufacturers.

EMC implementation is relatively simple task for
common machine configurations, although
advanced applications may require extensive
multidisciplinary knowledge and approach.

Testbed configuration presented in this paper is
the base on which several ongoing projects will
continue.

Retrofitting of large planning machine is the first
project at FSB in cooperation with HSTec Co.,

which will result with conversion into 3-axis CNC
machining center and will include EMC as open
control system. Upgrading current testbed to 4-axis
milling machine is also ongoing short-term project.

Future research will be focused on using EMC
as platform for integration and analyzes of various
process monitoring and control algorithms on both
developing testbeds.

5. REFERENCES
[1] Pritschow, G., Daniel, Ch., Junghans, G.

Sperling, W., 1993, Open System Controllers
– A challenge for the Future of the Machine
Tool Industry, CIRP Annals – Manufacturing
Technology, 42(1), p. 449-452.

[2] Asato, O.L., Kato, E.R.R., Inamasu, R.Y.,
Porto, A.J.V., 2002, Analysis of Open CNC
Architecuture for Machine Tools, Journal of
the Brazilian Society of Mechanical Sciences,
p. 208-212.

[3] Koren, Y. et al., 1999, Reconfigurable
Manufacturing Systems, CIRP Annals –
Manufacturing Technology, 48(2), p. 527-540.

[4] Proctor, F.M., Michaloski J., 1993, Enhanced
Machine Controller Architecture Overview,
Available from: ftp://ftp.isd.mel.nist.gov/pub/
NISTIR_5331.pdf

[5] Pritschow, G. et al., 2001, Open Controller
Architecture – Past, Present and Future, CIRP
Annals – Manufacturing Technology, 50(2), p.
463-470.

[6] Erol, N.A., Altintas, Y.. Ito, M.R., 2000, Open
system architecture modular tool kit for motion
and machining process control, IEEE/ASME
Transactions on Mechatronics, 5, p. 281 - 291.

[7] EMC applications, Available from: wiki.
linuxcnc.org/cgi-bin/emcinfo.pl?Videos;
www.linuxcnc.org/component/option,com_web
links

[8] Proctor, F.M., Shackleford, W.P., 2001, Use of
open source distribution for a machine tool
controller, Sensors and controls for intelligent
manufacturing, Boston MA, pp. 19-30

[9] EMC User Manual, Available from: http://www.
linuxcnc.org/docs/EMC2_User Manual.pdf

[10] HAL User Manual, Available from: http://www.
linuxcnc.org/docs/HAL_User_Manual.pdf

[11] Real-Time Control Systems Library – Software
and Documentation, Available from: http://
www.isd.mel.nist.gov/projects/rcslib/

[12] The NML Programmer´s Guide, Available
from:http://www.isd.mel.nist.gov/projects/rcslib
/NMLcpp.html

[13] Proctor, F.M., Shackleford, W.P., Michaloski
J.L., 2000, The Neutral Message Language: A
Model and Method for Message Passing in
Heterogeneous Environments, Available from:
www.isd.mel.nist.gov/documents/shackleford/
Neutral_Message_Language.pdf

[14] RTAI - the RealTime Application Interface for
Linux, Available from: http://www.rtai.org

CIM2009 June, 17-20, 2009 Biograd, Croatia

 216

[15] RT Linux, Available from: www.rtlinuxfree.com
[16] EMC components, Available from: http://wiki.

linuxcnc.org/cgi-bin/emcinfo.pl?EMC
_Components

[17] Simple Tp Notes, Available from:
http://wiki.linuxcnc.org/cgi-bin/emcinfo.pl?
Simple_Tp_Notes

[18] EMC Integrator Manual, Available from:
http://www.linuxcnc.org/docs/EMC2_Integrator
_Manual.pdf

[19] Marietta, M., 1994, Next generation controller
(NGC) specifications for an open system
architecture (SOSAS) revision 2.0. Technical
report, National Center for Manufacturing
Sciences, Available from: ftp://ftp.isd.mel.nist.
gov/pub/NGC_document.pdf

[20] Xming X Server, Available from: http://www.
straightrunning.com/XmingNotes/

[21] Technical characteristics for servomotors type
SB04A, Available from: http://mecapion.com

[22] Technical characteristics for digital servo
controllers types DPCANIE-030A400 and
DPCANIE-060A400, Available from:
http://www.a-m-c.com

[23] DriveWare software package, Available from:
http://www.a-m-c.com

[24] Technical characteristics for Motenc-Lite
interface card, Available from: http://www.
vitalsystem.com

ACKNOWLEDGEMENTS
The authors wish to thank the Ministry of Science,
Education and Sport of the Republic of Croatia for
funding this project, and also to Mr. Gyorgy David
from HUNOR Ltd. Company for providing
assistance during testbed design.

