
ENG-7680: SCADA Laboratory Experiments

1 Ladder Logic using ClassicLadder

Manual 1 http://wiki.linuxcnc.org/cgi-bin/emcinfo.pl?ClassicLadder

Manual 2 http://mat.sourceforge.net/manual/logic/classicladder.html

1

1.1 Getting Familiar with Timers

1.1.1 Experiment
Develop an algorithm that controls a dangerous process that requires the use of two
palm buttons to be acted on at the same time to prevent any injury. To start the
process, the two palm buttons must be pressed within 2.5s (a real process would
require cca ten times shorter time frame) of each other, and must be held engaged
for the entire process cycle. As soon as one of the buttons is disengaged, the process
stops immediately.

Program this control algorithm and simulate it in Classic Ladder. Provide the
ladder logic and simulation results.

1.1.2 Experiment
A motor is controlled by two momentary switches. The normally-open START
switch starts the motor and the normally-closed STOP switch stops the motor. For
an extra protection, the motor is started only if the START switch is thrown twice
in two second time interval (a real process would require cca four times shorter time
frame). Implement the control using the ladder diagram.

Program this control algorithm and simulate it in Classic Ladder. Provide the
ladder logic and simulation results.

1.2 Sliding Door Control
Develop a ladder logic to operate a shop sliding door using the ’belt-conveyor’ hard-
ware. Here is the description:

1. To open the sliding door, a floor mat switch on either side must be acted on;
if not engaged, the door will close after 5 seconds.

2. The marker on the belt will simulate the door travelling between two limit
switches, the photo sensors.

3. After expiration of the time delay, door closing latches until the “CLOSED”
position is reached.

4. If the floor mat switch is acted on again while the door closes, door immediately
opens again.

5. LED’s are indicating whether the sliding door is opening or closing.

NOTICE: The hardware units were custom built over several months
by a number of volunteers including a generous donation from overseas;
please look after the units carefully!

2

I/O Configuration:

Please refer to the circuit schematic, read document /opt/classicladder/README.txt,
and run the example /opt/classicladder/projects examples/parallel port direct.clp

before configuring the I/O. The example tabulized below configures the direct parallel-
port access such that the binary input %I3 is read as the status of 3rd bit in a byte
at address 379 (DB25 pin #15), and the binary output %Q5 is changed by writing
5th bit of a byte at address 378 (DB25 pin #7). Note there are only 5 binary inputs
in the parallel port interface.

DIRECT PORT ACCESS INPUTS OUTPUTS

1st I/O mapped 0 (%I0) 0 (%Q0)
Port Address 379 378
First Channel 0 0
Nbr of Channels 8 8

The table below shows the parallel port/cable pinout mapping:

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
(LSB) (MSB)

379 (Input) #15 #13 #12 #10 #11
378 (Output) #2 #3 #4 #5 #6 #7 #8 #9

3

4

2 Digital-To-Analog Converter

2.1 OBJECTIVES

In this lab, you will learn how to design, simulate and build a 3-bit D/A converter.
In particular, you will get familiar with these aspects of instrumentation:

• Modeling and simulation of an interface circuit

• Design a PC to analog circuit interface

• Serial port programing in C using Linux

• Program D/A converter

2.2 BACKGROUND

To output an analog voltage from a PC or µcontroller, the numerical value
(integer) must be converted to an analog voltage by a D/A converter. Analog
outputs are much simpler than analog inputs. This process is very fast, and does
not experience the timing problems of sampling and conversion with analog inputs.
However, analog outputs are still subject to quantization errors.

2.3 EQUIPMENT

Equipment

Variable dual DC power supply
Prototyping breadboard with jump wires
Multimeter
Storage oscilloscope
PC with serial port

Parts

Quad 741 Op Amp
3 diodes
Serial port connector (female) with lead wires
Resistors & Capacitors

5

V o

R 1

R 2

R 3

R
4

R
5

R
6

2
1

A 2

3

2
1

A 1

3

2
1

A 0

3

+
-G

1

2 R

2 R

2 R

2
R

R
R

S W

S W

S W

B
A

T

G N D

Figure 1: Ladder resistor network DAC

2.4 EXPERIMENTS

1. Figure 1 shows the concept of a 3 bit resistive ladder network D/A converter
(DAC). This DAC design has a great advantage over the weighted resistor DAC
in that only 2 values are used, R and 2R so the overall uncertainty/accuracy
is much better.

2. Simulate the circuit using an open source circuit simulator QUCS available on
the Live CD or at qucs.sourceforge.net shown in Figure :

6

R1

R=50 Ohm

R2

R=50 Ohm

R3

R=100 Ohm

R4

R=100 Ohm

R5

R=100 Ohm
R6

R=100 Ohm

dc simulation

DC1

Pr1

Pr2

Pr3

V1

U=8 V

V2

U=8 V

dac

number

1

dac.V

5

Pr1.I

0.03

Pr2.I

-0.035

Pr3.I

0.0425

3. Fill the conversion table below linking eight 3-bit inputs to 8 voltage outputs
and 24 switch currents.

Binary Input DAC Voltage IA0 IA1 IA2

000
001
010
011
100
101
110
111

4. At home, develop an analytical model for the DAC voltage output in terms of
the R-2R resistances, reference voltages and the switch positions. Also develop
an analytical model for 3 switch currents. List the analytical formulae and fill
the table below using the formulae. Compare your calculated data with the
simulated data above. The two tables should agree, if not, start again...

7

uDAC = uDAC(a0, a1, a2) U,R : constants

ipri = ipri(a0, a1, a2) i = 0, 1, 2

ai = {0, 1}

Binary Input DAC Voltage IA0 IA1 IA2

000
001
010
011
100
101
110
111

5. Design RS232 [-15V,+15V] to [8V,0V] interface as shown in Figure 2 that
provides a low-impedance output in both reference levels [GND, +8VDC].

6. From data sheets, determine the maximum allowable current at the OP Amp
output. By using the simulation results, determine the values of R-2R ladder
network that will protect the interface OP Amps from overloading. List the
values.

7. Assemble the resistive ladder network on the breadboard using the resistors
determined above. Interconnect the buffer to the ladder network and add the
voltage follower buffer at the DAC output; note this inverts the polarity!

8. Verify the proper DAC function by switching the 3 inputs between [-15V,+15V]
using jump wires; fill the table below:

Binary Input DAC Voltage

000
001
010
011
100
101
110
111

9. Connect DAC to PC serial port (TTY/COM). Follow the steps below to output
a triangular (sawtooth) waveform. Record the waveform on the scope-screen
and attach it to your report.

8

4

1 1

V o

R T S

D T R

T x D

G N D G N D

+
+

2

3
1

I C 1 A

6

5
7

I C 1 B

9

1 0
8

I C 1 C

1 3

1 2
1 4

I C 1 D

+
8

V
-

8
V

C 1

C 2

D 1

D 2

D 3

R
1

R
2

R
3

R 4

R 5

R 6

R
7

R
8

R
9

L M 3 2 4 N

L M 3 2 4 N

L M 3 2 4 N

L M 3 2 4 N

1 0 M F

1 0 M F

G N D

G N D

1
0

k
1

0
k

1
0

k

G N D

G N D

G N D

2 R

2 R

2 R

2
R

R
R

G N D

DB9 PIN RS232 I/O COLOR

1 DCD in brown
2 RXD in purple
3 TXD out red
4 DTR out orange
5 GND black
6 DSR in grey
7 RTS out yellow
8 CTS in blue
9 RI in green

Figure 2: RS232 to R-2R DAC interface

2.5 Software Development

1. Boot Linux using Live Debian CD

2. Test individual pins:

(a) Open a root terminal window.

(b) cp -R /var/MUN/DAC-ADC-lab-sources /home/user/Desktop/

(c) cd /home/user/Desktop/DAC-ADC-lab-sources

(d) ls -al

(e) gcc -o lp-tty-start.bin lp-tty-start.c

9

(f) gcc -o port-write-then-read.bin port-write-then-read.c

(g) ls -al

(h) ./lp-tty-start ./port-write-then-read 1020 0

and check the RTS line output voltage

(i) ./lp-tty-start ./port-write-then-read 1020 3

and check the RTS line output voltage again

(j) To exit from the running program, type Ctrl + c

3. Output Saw-Tooth voltage:

(a) Open a text editor and save the C code listed below in DAC-saw-COM1.c

file.

(b) Compile:gcc -o DAC-saw-COM1.bin DAC-saw-COM1.c.

(c) Run: ./DAC-saw-COM1.bin

(d) Record the resulting waveform on the scope screen and attach it to the
report.

4. Shutdown the system by shutdown -h now

2.6 INTERFACING THE SERIAL PORT (RS232)

Serial Port Base Address
COM 1 3F8
COM 2 2F8
COM 3 3E8
COM 4 2E8

Used Serial Port Registers
Address Read/Write Register
BaseAddress+3 R/W Line Control Register (LCR)
BaseAddress+4 R/W Modem Control Register (MCR)

Bit 6 of LCR sets break enable. When active, the TxD line goes into ”Space”
state or logic ’0’ (positive voltage). Setting this bit to ’0’ disables the break, i.e. the
line goes negative (’Mark’ state or logic ’1’) in the idle state.

Bit 0 sets/resets DTR line; Bit 1 of MCR sets/resets RTS line.

10

#include <sys/ioctl.h>

#include <fcntl.h>

#include <sys/io.h>

#include <stdio.h>

int main(){

int port, kbdin;

char value, MSB, INB, LSB;

int BASEPORT = 0x3F8; /* TYYS0 or COM1 */

if (ioperm(BASEPORT, 8, 1)) {perror("ioperm"); return(1);} /* PORT OPENED */

do

{

for(value=0; value<=7; value++)

{

MSB = 0; INB= 0; LSB= 0;

if ((value & 4) != 0) MSB = 1;

if ((value & 2) != 0) INB = 1;

if ((value & 1) != 0) LSB = 1;

outb((MSB<<1) | (INB<<0), BASEPORT+4);

// set RTS (MSB) {bit 1 of BASEPORT+4}

// set DTR (INB) {bit 0 of BASEPORT+4}

outb(LSB<<6, BASEPORT+3);

// set TxD (LSB) {bit 6 of BASEPORT+4}

printf(" RTS(7) DTR(4) TXD(3) \n");

printf(" MSB LSB \n");

printf(" %d %d %d \n",

inb(BASEPORT+4)>>1 & 0x01,

inb(BASEPORT+4)>>0 & 0x01,

inb(BASEPORT+3)>>6 & 0x01);

sleep(1);

}

printf("Enter ’1’ to run saw tooth again, enter ’0’ to exit. \n");

scanf("%d",&kbdin);

} while(kbdin);

if (ioperm(BASEPORT, 8, 0)) {perror("ioperm"); return (0);} /* PORT CLOSED */

return 0;}

11

3 ANALOG-TO-DIGITAL CONVERTER

3.1 OBJECTIVES

In this lab, you will learn how to combine a 3-bit D/A converter built in the
previous lab with a comparator to make a simple successive approximation A/D
converter (ADC). In addition, you will also build a four-channel ADC that does not
require any external power supply. In particular, you will get familiar with these
aspects of instrumentation:

• Build a sample & hold device

• Serial port programing in C using Linux

• Develop a mathematical model for ADC linearization

3.2 BACKGROUND

To input an analog voltage into a PC or µcontroller, the continuous voltage
value must be first sampled and then converted to a numerical value by an A/D
converter. The process of sampling the data is not instantaneous, so each sample
has a start and stop time. The time required to acquire the sample is called the
sampling time ts. A/D converters can only acquire a limited number of samples per
second. The time between samples is called the sampling period TS, and the inverse
of the sampling period is the sampling frequency (also called sampling rate). The
sampling time is often much smaller than the sampling period. The maximum Vmax

and minimum Vmin readable voltages are a function of the control hardware such as
0V to 5V, 0V to 10V, -5V to 5V or -10V to 10V. The number of bits of the A/D
converter is the number of bits in the result word. If the A/D converter is 8 bit then
the result can read up to 256 different voltage levels. Most A/D converters have 12
bits, 16 bit converters are used for precision measurements.

Sample & Hold (S/H) circuitry takes a snapshot of the input signal and holds
the value for the A/D converter to have a stable signal. A simple S/H circuit is
shown in Figure 5. FET switch connects the capacitor to the buffered input once
every sample period. The capacitor then holds the voltage value sampled until a
new sample is acquired.

The sampling subsystem takes a period of time (aperture time) to capture a
sample of the input signal. The holding subsystem holds the sampled voltage on
the capacitor. This voltage slowly decreases over time despite of a high impedance

12

connection to a voltage follower. It is then necessary to perform the A/D conversion
in a short period of time.

3.3 EQUIPMENT

Equipment

Function generator with GND isolation plug
Variable DC power supply
Prototyping breadboard with jump wires
Multimeter
Storage oscilloscope
PC with serial port

Parts

Quad Op Amp LM324
2 Zener diodes 7.5V
FET 2N5951
Serial port connector (female) with lead wires
Resistors & Capacitors

3.4 EXPERIMENTS

3.4.1 Successive Approximation ADC

1. Use the previously developed 3-bit D/A converter and change the output buffer
into a comparator to make 3-bit successive approximation A/D converter as
shown in Figure 3. Connect the input voltage to the non-inverting terminal of
the comparator, DAC output to the inverting terminal, and the comparator
output to one of the RS232 inputs, e.g. CTS.

2. Compile the C program below listed below.

3. For 0.5V test voltage increments, record the input-output characteristic.

13

4

1 1

R T S

D T R

T x D

G N D

G N D

V i n p u t

+ 8 V

- 8 V

C T S

+
+

2

3
1

I C 1 A

6

5
7

I C 1 B

9

1 0
8

I C 1 C

1 3

1 2
1 4

I C 1 D

C 1

C 2

D 1

D 2

D 3

R
1

R
2

R
3

R 4

R 5

R 6

R
7

R
8

R
9

R
1

0

L M 3 2 4 N

L M 3 2 4 N

L M 3 2 4 N

L M 3 2 4 N

1 0 M F

1 0 M F

G N D

G N D

1
0

k
1

0
k

1
0

k

G N D

G N D

G N D

2 R

2 R

2 R

2
R

R
R

1
0

0
k

Figure 3: RS232 Successive Approximation ADC

ADC Input Voltage [V] Measured Voltage [V]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

14

#include <sys/ioctl.h>

#include <fcntl.h>

#include <sys/io.h>

#include <stdio.h>

int main(){

int port, exit;

char value, MSB, INB, LSB;

int BASEPORT = 0x3F8; /* TYYS0 or COM1 */

if (ioperm(BASEPORT, 8, 1)) {perror("ioperm"); return(1);} /* PORT OPENED */

value = 0;

exit = 1;

do

{

MSB = 0; INB= 0; LSB= 0;

if ((value & 4) != 0) MSB = 1;

if ((value & 2) != 0) INB = 1;

if ((value & 1) != 0) LSB = 1;

outb((MSB<<1) | INB, BASEPORT+4);

// set RTS = MSB bit 1 of BASEPORT+4

// set DTR = INB bit 0 of BASEPORT+4

outb(LSB<<6, BASEPORT+3);

// set TxD = LSB bit 6

sleep(1);

printf("VALUE= %d CTS= %d \n", value, inb(BASEPORT+6)>>4 & 0x01);

if((inb(BASEPORT+6)>>4 & 0x01)==0)

{

printf("Voltage is %d [V] \n", value-1);

exit = 0;

}

value++;

if(value==8) exit=0;

} while(exit);

if (ioperm(BASEPORT, 8, 0)) {perror("ioperm"); return (0);} /* PORT CLOSED */

return 0;}

15

3.4.2 ADC using time interval

1. Measured analog voltages can also be compared to a variable voltage on a
capacitor instead of DAC we used previously. The concept of charging a
capacitor was covered in the class. Note RS232 outputs bipolar voltages that
are conditioned by using two 7.5V Zener diodes to ±8V max (Figure 4).

4

1 1

1

9

8

6

5

4

7

3

+
+

2

3
1

I C 1 A

6

5
7

I C 1 B

9

1 0
8

I C 1 C

1 3

1 2
1 4

I C 1 D

X 1

X 2

X 3

X 4

R
1

R
2

R
3

R
4

D
C

D
R

I
C

T
S

D
S

R
R

T
S

+
T

X
D

-

C 1

C 2

R 5R 6

D
T

R
G

N
D

D
1

D
2

C 3

L M 3 2 4 N

L M 3 2 4 N

L M 3 2 4 N

L M 3 2 4 N

G N D

G N D

G N D

G N D

1
0

0
k

1
0

0
k

1
0

0
k

1
0

0
k

G N D

G N D

G N D

G N D

1 0 M F

1 0 M F

G N D

G N D

1 k1 0 0 k

G N D

7
.

5
V

7
.

5
V1 0 0 n F

Figure 4: 4ch ADC using time interval

2. Modify C program below that measures the voltage using a time interval. You
may need to terminate the timing loop in case the measured voltage is out of
range. More references on the programming can be found at the end.

3. List your code and write the formula being used in your time-to-voltage con-
version:

4. Test your system and fill the table below:

16

/* ** */

/* SIMPLIFIED HW SETTING: */

/* DTR line (-12V/+12V) is used to charge a cap through a resistor (RC=93507us) */

/* GND line is connected to common ground */

/* CTS line is connected to comparator output */

/* OP AMP is powered from external power supply -15V/+15V */

/* A potenciometer is used to provide the input voltage between -12V/+12V */

/* Compile by gcc -lm -o ADCcapacitor.bin ADCcapacitor.c */

/* ** */

#include <sys/ioctl.h>

#include <fcntl.h>

#include <sys/io.h>

#include <stdio.h>

#include <sys/time.h>

#include <time.h>

#include <math.h>

int main(){

int port;

struct timeval tv;

long time1, time2;

double x;

int BASEPORT = 0x3F8; /* TYYS0 or COM1 */

if (ioperm(BASEPORT, 8, 1)) {perror("ioperm"); return(1);} /* PORT OPENED */

outb(0, BASEPORT+4); // reset DTR (bit #0)

sleep(1);

outb(1, BASEPORT+4); // set DTR (bit #0)

gettimeofday (&tv, NULL);

time1=tv.tv_usec;

do{

}

while(inb(BASEPORT+6)>>4 & 0x01); //read CTS

gettimeofday (&tv, NULL);

time2=tv.tv_usec;

x=24.0*(1.0-exp(-(double)(time2-time1)/93507.0))-12.0;

printf("time = %d [us], voltage = %5.2f [V] \n", (time2-time1), x);

if (ioperm(BASEPORT, 8, 0)) {perror("ioperm"); return (0);} /* PORT CLOSED */

return 0;}

17

ADC Input Voltage [V] Measured Voltage [V]

-8.0
-7.5
-7.0
-6.5
-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

5. Implement S/H circuit shown below meeting the following specifications:

Input voltage VIN range 0V – 8V
Max sampling frequency 10Hz
Min acquisition time 50ms

Determine the RC time constant and select the component values.

6. Using a function generator, determine

(a) the sampling time constant by setting the FET switch ON and feeding a
TTL square wave to S/H input, and

18

I N 1

I N 2

O U T2

3
1

I C 1 A

6

5
7

I C 1 B

F
E

T
DS

G

R 1

C 1
L M 3 2 4 N

L M 3 2 4 N

T
R G N D

Figure 5: A simple S/H circuit

(b) the holding time constant by feeding a TTL square wave to both S/H
input as well as the FET’s gate. This way the FET switch disconnects
the holding capacitor from the input signal at the transition from high
to low, thus allowing the capacitor to discharge through bleeding.

7. Conclude your work and findings.

3.5 SAMPLE CODE

3.5.1 MATH FUNCTIONS

Implementing x = ez:

#include <math.h>

double x=exp(double z);

Compiling & Linking:

gcc -lm -o XXX XXX.c

3.5.2 TIME FUNCTIONS - excerpt from www.linux-mag.com/id/847

The ftime() function allows you to retrieve the time information in millisec-
onds instead of the somewhat coarsely grained seconds provided by the time()

function. The prototype of the ftime() function as found in <sys/timeb.h> is
int ftime (struct timeb *tp); Although declared with a return value, this func-
tion always returns 0. To obtain information from it, you pass it a pointer to a
structtimeb. The struct is defined in <sys/timeb.h> as shown below along the
sample code:

19

struct timeb

{

time_t time; // seconds since 01/01/1970 ~time()

unsigned short int millitm; // milliseconds

short int timezone; // minutes west of Greenwich Mean Time

short int dstflag; // 1 if the system is using daylight savings time

};

/* sample code #1 */

#include <sys/timeb.h>

int main ()

{

struct timeb the_time;

ftime (&the_time);

printf (Number of seconds: %dn, the_time.time);

printf (Number of milliseconds: %dn, the_time.millitm);

printf (Time zone: %dn, the_time.timezone);

printf (Daylight savings time: %dn, the_time.dstflag);

}

The gettimeofday() function is very similar to the ftime() function except it
provides even more precise time information. The prototype, as listed in <sys/time.h>,
is as follows: int gettimeofday (struct timeval *tv, structtimezone*tz);

The first struct (of type struct timeval) provides the time in seconds and mi-
croseconds. A sample program that prints out similar information to the previous
example with ftime() is listed below:

/* sample code #2 */

#include <sys/time.h>

int main ()

{

struct timeval the_time;

struct timezone the_zone;

gettimeofday (&the_time, &the_zone);

printf (Number of seconds: %dn, the_time.tv_sec);

printf (Number of microseconds: %dn, the_time.tv_usec);

printf (Time zone: %dn, the_zone.tz_minuteswest);

printf (Daylight savings time: %dn, the_zone.tz_dsttime);

}

20

4 RS485 LINE DRIVER

4.1 OBJECTIVES

In this lab, you will learn how to test a differential data bus driver/receiver for
a multi-point communication. In particular, you will get familiar with these aspects
of instrumentation:

• Differences between single-ended data transmission and differential data trans-
mission

• Modeling and simulation of a dynamic circuit

• Design of an asymmetric delay for transient response

4.2 BACKGROUND

Line drivers and receivers are commonly used to exchange data between two or
more points (nodes) on a network. Reliable data communications can be difficult
in the presence of induced noise, ground level differences, impedance mismatches,
failure to effectively bias for idle line conditions, and other hazards associated with
installation of a network.

Standards have been developed to insure compatibility between units provided by
different manufacturers, and to allow for reasonable success in transferring data over
specified distances and/or data rates. The Electronics Industry Association (EIA)
has produced standards for RS485, RS422, RS232, and RS423 that deal with data
communications. Suggestions are often made to deal with practical problems that
might be encountered in a typical network. EIA standards where previously marked
with the prefix “RS” to indicate recommended standard; however, the standards are
now generally indicated as “EIA” standards to identify the standards organization.
While the standards bring uniformity to data communications, many areas are not
specifically covered and remain as “gray areas” for the user to discover (usually
during installation) on his own.

21

4.2.1 Single-Ended Data Transmission

Electronic data communications between elements will generally fall into two
broad categories: single-ended and differential. RS232 (single-ended) was introduced
in 1962 and has remained widely used through the industry. The specification allows
for data transmission from one transmitter to one receiver at relatively slow data
rates (up to 20K bits/second) and short distances (up to 50Ft. @ the maximum
data rate).

Independent channels are established for two-way (full-duplex) communications.
The RS232 signals are represented by voltage levels with respect to a system common
(power / logic ground). The state MARK or 1 has the signal level negative with
respect to common, and the state SPACE or 0 has the signal level positive with
respect to common. RS232 has also numerous handshaking lines primarily used
with modems. RS423 is another single ended specification with enhanced operation
over RS232; however, it has not been widely used in the industry.

4.2.2 Differential Data Transmission

When communicating at high data rates, or over long distances in real world en-
vironments, single-ended methods are often inadequate. Differential data transmis-
sion (balanced differential signal) offers superior performance in most applications.
Differential signals can help nullify the effects of ground shifts and induced noise
signals that can appear as common mode voltages on a network.

RS422 (differential) was designed for greater distances and higher Baud rates
than RS232. In its simplest form, a pair of converters from RS232 to RS422 (and
back again) can be used to form an “RS232 extension cord.” Data rates of up to
100K bits / second and distances up to 4000 Ft. can be accommodated with RS422.
RS422 is also specified for multi-drop (party-line) applications where only one driver
is connected to, and transmits on, a “bus” of up to 10 receivers.

While a multi-drop “type” application has many desirable advantages, RS422
devices cannot be used to construct a truly multi-point network. A true multi-point
network consists of multiple drivers and receivers connected on a single bus, where
any node can transmit or receive data.

RS485 meets the requirements for a truly multi-point communications network,
and the standard specifies up to 32 drivers and 32 receivers on a single (2-wire)
bus. With the introduction of “automatic” repeaters and high-impedance drivers
/ receivers this “limitation” can be extended to hundreds (or even thousands) of
nodes on a network. RS485 extends the common mode range for both drivers and
receivers in the “tri-state” mode and with power off. Also, RS485 drivers are able
to withstand “data collisions” (bus contention) problems and bus fault conditions.

22

4.3 EQUIPMENT

Equipment

Function generator
5V DC power supply
Prototyping breadboard with jump wires
Multimeter
Storage oscilloscope

Parts

SN75176 or equivalent
1N4448 fast diode or equivalent
74AC14 Hex Schmitt Trigger Inverter
Resistors, capacitors

4.4 EXPERIMENTS

Figure 6 shows the schematic of a point-to-point RS485 link shown as configured
for left-to-right transmission only. Note the parasitic capacitances C1, C2, and C3.
We will conduct experiments using only one 75176 chip as shown in Figure 7.

7

A

B

I C 1

6

G N D 5

V C C 8

R O1

R E /2

D E3

D I4

7

A

B

I C 2

6

G N D5

V C C8

R O 1

R E / 2

D E 3

D I 4

T
X

D

R 1 R 2 R 3 R 4 R 5 R 6

C
1

C
2

C
3

T
X

E
N

R
X

D

M A X 3 4 6 8 C P A M A X 3 4 6 8 C P A

5 6 0 1 2 0 5 6 0 5 6 0 1 2 0 5 6 0

G N D G N D

V C C V C C

G N D G N D

G N D

G N D G N D

V C C V C C

Figure 6: Two 75176 line drivers (one-way config)

7

A

B

I C 1

6

G N D 5

V C C 8

R O1

R E /2

D E3

D I4

T
X

D

R
X

D

R 1 R 2 R 3

C
1

C
2

C
3

T
X

E
N

M A X 3 4 6 8 C P A

5 6 0 1 2 0 5 6 0

G N D

V C C

G N D G N D

G N D

G N D

V C C

Figure 7: 75176 line driver test

23

1. Assemble the circuit in Figure 7 on the breadboard excluding the resistors R1
and R3 at the moment.

2. Connect a function generator to TxD and an oscilloscope to RxD.

3. Enable signal transmission by pulling high (+5V) the TxEN.

4. Verify the transmission of 10kHz TTL signal on the scope screen.

5. Now, feed the 10kHz TTL signal to TxD input and its inverted form to TxEN
input (use one NOT gate from 74AC14. Dump the scope screen (ch1:TxD,
ch2:RxD).

6. Add the resistors R1 and R3, and repeat the previous experiment.

7. Now, simulate the parasitic capacitances by adding capacitors C1, C2, and
C3, all of value 10pF, and repeat the previous experiment.

8. Evaluate the maximum frequency a signal that can be transmitted assuming
the sampling point being in the midpoint of each bit.

In principle, the signal transmitter (line driver) could be ’auto-enabled’ by negated
(inverted) TxD signal. This way, only ’0’ bits are put on the line while ’1’ bits (in-
cluding the idle state) are driven by the pull-down and pull-up resistors R1 and
R3. This would work as long as the parasitic capacitances of the line are negligible,
which is often not the case. For this reason we will build an asymmetric delay line
that will delay the transition edge from ’0’ to ’1’ on the TxEN input by a small
amount of time to assist R1 and R3 to flip the polarity quickly.

1. Develop a simulation model for the circuit in Figure 8. If the logic part model
is not available, simulate only the analog portion of the circuit (Figure 9). An
open source circuit simulator is available at: qucs.sourceforge.net.

2. Feed a transition ’0’ to ’1’ and ’1’ to ’0’ to TxD and record the signal TEST
and TxEN.

3. Now implement the TxEN circuit on the breadboard and measure its transient
response. Discuss your results.

1 3 1 2
I C 1 A

1 1 1 0
I C 1 B

9 8
I C 1 C

R 1 R 2

C 1
D 1

T
X

D

T
E

S
T

T
X

E
N

7 4 1 4 N 7 4 1 4 N

7 4 1 4 N

3 9 k 3 9 0

1 n F

G N D

1 N 4 4 4 6

Figure 8: Auto-enable for 75176 line driver

24

D1
Is=1e-15 A
N=1
Cj0=10 fF

V1
U=5 V
TH=0.5 ms
TL=0.5 ms

R2
R=390 Ohm

C1
C=1 nF

Pr1

transient
simulation

TR1
Type=lin
Start=0
Stop=3 ms

R1
R=39k

Figure 9:

25

5 RS485 BUS WITH MODBUS

5.1 OBJECTIVES

In this lab, you will build RS232↔RS485 converter for a multi-point communi-
cation bus. In addition you will be using a C Modbus library to create a custom
application. In particular, you will get familiar with these aspects of instrumenta-
tion:

• Built a level shifter RS232 to TTL

• Solder the converter on a proto board

• Troubleshoot serial communication using a terminal software

• Implement Modbus protocol using C library

5.2 BACKGROUND

Modbus is a serial communication protocol used for transmitting information
over serial lines between electronic devices. The device requesting the information is
called the Modbus Master and the devices supplying information are Modbus Slaves.
In a standard Modbus network, there is one Master and up to 247 Slaves, each with
a unique Slave Address from 1 to 247. Versions of the Modbus protocol exist for
serial lines (RTU and ASCII) and for Ethernet (Modbus TCP). Some functions are
explained in detail below, for more information refer to MODBUS APPLICATION
PROTOCOL SPECIFICATION V1.1b

Coil Numbers Data Addresses Type Table Name

1-9999 0000 to 270E Read-Write Discrete Output Coils
10001-19999 0000 to 270E Read-Only Discrete Input Contacts
30001-39999 0000 to 270E Read-Only Analog Input Registers
40001-49999 0000 to 270E Read-Write Analog Output Holding Registers

Table 1: Modbus mapping

26

Function Code Action Table Name

01 (01 hex) Read Discrete Output Coils
05 (05 hex) Write single Discrete Output Coil
15 (0F hex) Write multiple Discrete Output Coils
02 (02 hex) Read Discrete Input Contacts
04 (04 hex) Read Analog Input Registers
03 (03 hex) Read Analog Output Holding Registers
06 (06 hex) Write single Analog Output Holding Register
16 (10 hex) Write multiple Analog Output Holding Registers

Table 2: Modbus functions

5.3 EQUIPMENT

Equipment

5V DC power supply
Protoboard
Multimeter
Storage oscilloscope

Parts

SN75176 or equivalent
MAX232/SP232A or equivalent
1N4448 fast diode or equivalent
74AC14 Hex Schmitt Trigger Inverter
Resistors, capacitors

5.4 EXPERIMENTS

5.4.1
Build RS232 ⇐⇒ TTL converter using MAX 232 chip, Figure 10.

5.4.2
Interconnect PC serial port with MAX232 and SN75176 including the auto-enabler.
This will conclude the RS232 to RS485 converter hardware work.

5.4.3
Using cutecom terminal program, check your converter that always ’listens’ to the
bus (RxEN pulled down) using the loopback test:

27

Figure 10: MAX232 converts RS-232 to TTL

1. Set the device to ttyS0 or ttyUSB0 1

2. Set comm parameters to 9600/8-N-1

In case you do not see what you sent out in the receive window , your converter
is not working properly. Remove your converter and connect pin 2 to pin 3 on the
DB9 RS232 connector (loopback test). Check the signal on the oscilloscope screen.
Then reconnect the converter and check the signal on the bus. Connect line A to
CH1 and line B to CH2, as there is no ground reference on RS485 bus! Then use
a MATH function in the scope and perform (CH1-CH2) operation. Once you gain
the proper function from your converter, proceed to the next part.

5.4.4
Download libmodbus-0.0.4.tar.gz (156.8 KB) from sourceforge.net/projects/libmodbus

or fetch it from the LabNet server in /autofs/pub/engr/courses/7680 directory
using ssh/sftp username@garfield.cs.mun.ca. Untar the file and read the README.txt
file.

Libmodbus is a dynamic library to use Modbus dialog protocol with GNU/Linux.
LibModbus include master, slave and also serial port configuration functions. The

1After plugging in the USB to RS232 converter, issue command dmesg | tail to see where
your converter is mapped. Then write this map, i.e. /dev/ttyUSB0, into the CUTECOM device
window since it is not included in the drop down options.

28

library is working only in RTU mode, so you must to configure every time 8 data
bits.

Only register oriented functions listed below are implemented:

03 (0x03) read n bytes
04 (0x04) read n bytes
06 (0x06) write 1 byte
07 (0x07) read software status
08 (0x08) line test
16 (0x10) write n bytes

5.4.5
Develop software that responds to Master’s queries using the Libmodbus library
with these parameters: 9600 baud, 8 bit data, 1 stop bit, NO parity. Only the
following two functions will be tested:

0x03 read holding registers
0x10 write holding registers

From each register, only the lower byte will be examined, i.e. the higher byte will
be discarded upon reading. The slave database (memory map) will contain the fol-
lowing information:

A text message in ASCII that con-
tains the full name and the student
number, padded with zeros at the
high end. This message will be lo-
cated at even address registers start-
ing at the offset 0xA0 as shown below
for “John XXX”:

...
...

0xA8 “ ”
0xA6 “n”
0xA4 “h”
0xA2 “o”
0xA0 “J”

Real-time updated local time/-
date message in ASCII text format
of “HH:MM:SS YYYY/MM/DD”
will be also located at even ad-
dress registers starting at the offset
0x40 as shown below for “12:31:56
2008/02/27”:

...
...

0x48 “1”
0x46 “3”
0x44 “:”
0x42 “2”
0x40 “1”

5.5 MODBUS references

29

5.5.1 Read Holding Registers 03 (0x03)

This function code is used to read the contents of a contiguous block of holding
registers in a remote device. The Request specifies the starting register offset address
and the number of registers.

The register data in the response message are packed as two bytes per register,
with the binary contents right justified within each byte. For each register, the first
byte contains the high order bits and the second contains the low order bits.

Function code 1 Byte 0x03
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 1 to 125 (0x7D)

Table 3: Request 03

Function code 1 Byte 0x03
Byte count 1 Byte 2n
Register value 2n Bytes data

Table 4: Response 03

5.5.2 Read Input Registers 04 (0x04) ∼ Read Holding R’s

5.5.3 Write Single Register 06 (0x06)

This function code is used to write a single holding register in a remote device.
The Request specifies the address of the register to be written. The normal response
is an echo of the request, returned after the register contents have been written.

Function code 1 Byte 0x06
Register Address 2 Bytes 0x0000 to 0xFFFF
Register Value 2 Bytes 0x0000 to 0xFFFF

Table 5: Request 06

Function code 1 Byte 0x06
Register Address 2 Bytes 0x0000 to 0xFFFF
Register Value 2 Bytes 0x0000 to 0xFFFF

Table 6: Response 06

30

5.5.4 Diagnostics (Serial Line only) 08 (0x08)

Function code 08 provides a test for checking the communication system between
a client (Master) device and a server (Slave). The server echoes both the function
code and sub-function code in a normal response.

5.5.5 Write Multiple registers 16 (0x10)

This function code is used to write a block of contiguous registers (1 to 123
registers) in a remote device. Data is packed as two bytes per register. The nor-
mal response returns the function code, starting address, and quantity of registers
written.

Function code 1 Byte 0x10
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 0x0001 to 0x007B
Byte Count 1 Byte 2n
Data 2n Bytes data

Table 7: Request 16

31

