
1

Servo Tuning Tutorial

2

Presentation Outline

 Trajectory generator and velocity profiles

 Servo system defined

 Why does a servo system need to be tuned

 The PID Filter

 Proportional gain

 Introduction

 Derivative Gain

 Integral Gain

 Servo Tuning program controls

 Initial settings

 Tuning a servo

 Setting the proportional gain

 Setting the derivative gain

 The first move

 Saving the PID and trajectory parameters

 Analyzing the performance of the servo

 Setting the integral gain

3

Introduction
Almost everyone who has worked with servo systems has had at least one challenging experience
while trying to tune a servo. Theory often doesn’t seem to work very well in practice. And oftentimes
successfully tuning a servo requires a lot of trial and error. In this tutorial we will try to remove some
of the mystery and help you reduce the amount of trial and error required to succeed.

The dictionary describes a servomechanism as:
An automatic system in which the output is constantly compared with the input through some form of
feedback. The error (or difference) between the two quantities can be used to bring about the desired amount
of control.

But this is a generic definition which doesn’t really tell us very much.

#1 – First, what is a Servo?

500

268
500

638

4

We will more specifically define this automatic system as a closed loop servo system which is
comprised of:

Typical closed loop servo system

 A servo amplifier, which provides drive current to the motor

 A motor feedback device, typically an incremental quadrature encoder

 A motion controller

 An electric motor, typically DC brush or DC brushless

Servo Amplifier

Servo Motor

Encoder

Servo Command
(+/- 10 volt)

Incremental Encoder Outputs
(A+, A-, B+, B-, Z+, Z-)

Motion
Controller

5

Upon receiving a motion command from the user, if the servo system has not been tuned the servo
controller cannot calculate the appropriate torque/velocity command to apply to the servo amplifier.
Imagine a seesaw, with the +/- 10 volt torque/velocity command on one side and the response of
the motor/load (feedback from an encoder) on the other side.

#2 – Why does a servo need to be tuned?

Until the servo is tuned, the system is effectively out of balance. Only after a servo has been
tuned can the controller calculate the appropriate torque/velocity command output for a given
user defined motion.

Output

(command signal)

Input

(encoder)

Output
(command signal)

Input
(encoder)

Servo tuning

The behavior of an improperly tuned servo system can range from no motion at all, to violent
oscillation.

6

For both position and velocity mode moves, upon receiving a command to move the motor, the
motion controller’s Trajectory Generator will calculate a motion plan that is called the velocity
profile. The velocity profile defines the velocity of an axis as a function of time. For a servo the
velocity profile can be either trapezoidal or S-curve. Trapezoidal profiles move the axis to the target
in the least amount of time, but may cause the machine to jerk at the beginning and end of a move.
S-curve profiles are known for ultra smooth motion but the calculated duration of the move will be
longer than for a trapezoidal profile. There are four parameters that the trajectory generator requires
in order to calculate a velocity profile:

Trapezoidal Profile S curve Profile
Time Time

Velocity Velocity

 Move distance
 The maximum velocity during the move
 Rate of acceleration
 Rate of deceleration

#3 – So what is servo tuning and how do you do it?

First lets explore what happens when the user commands an axis to move.

There are two basic moves types that a motion controller can perform; Position or Velocity.

Position mode move - the user specifies the target position to which the motor will move. The
target can be specified as either an absolute or relative position.

Velocity mode move - the user defines the velocity and direction for a move, no target position is
defined. The axis will continue to move until the user commands it to stop.

7

The motion controller’s Trajectory Generator calculates a series of ideal target positions that are
evenly spaced in time and which lie along the desired trajectory profile (red points in the graph).
The motion controller calculates a new target position every millisecond (it can also be optimized for
faster updates to meet the needs of specific applications).

But what is required to move the motor to these optimal positions? The answer is a PID algorithm
(called a “PID filter” or “Servo filter”). This PID filter gets a new optimal position during each update
of the servo loop, and issues a new control command to the motor amplifier/drive to try to drive the
motor to that position. The frequency of this update is known as the “servo loop update rate”.

Velocity
(encoder counts

 per second)

= Trajectory Generator positions = Calculated trajectory
(1 mSec Interval)

Time (msec's)
4 8 12 16 20

250

500

1000

750

= Optimal positions (125 usec)

The trajectory generator then interpolates multiple points between each 1 millisecond target
position. These interpolated points are called Optimal Positions. Up to 4 intermediate optimal
positions are calculated for each target position.

8

#4 – The PID Filter

PID DAC
Position

Error
1 mSec
Target

Positions

Current position

Motion Controller

So how does the PID filter work? Well the simple answer is that it operates on position error.

The PID filter is responsible for calculating the level of the command output that is applied to the
servo amplifier/drive. Referring again to the analogy of a seesaw, the PID filter is the balancing
agent between the command output of the servo controller and the response of the motor/load.
When you tune a servo, you are essentially tuning various attributes of the PID filter.

Position error = The difference between the actual axis position and the desired axis
position. (Position error is also referred to as “following error”).

So how does the controller determine the actual and desired positions? The actual position is
determined by reading the motor’s encoder position. And the desired position is simply the most
recent Optimal Position calculated by the trajectory generator.

The PID filter then compares the actual and desired positions to calculate the position error and
then generate a command to the motor amplifier/drive which is proportional to this position error.

9

Now that we know what the PID filter does (it calculates the level of the torque/velocity command),
lets try to understand how it works. A PID filter has three components or terms:

Proportional gain
The Proportional gain is the primary component or term of the PID filter. The command voltage
output is equal to proportional gain multiplied by current position error. Proportional gain units are
volts per encoder counts of position error. For example, if the proportional gain is 1.0, and the axis
is 5 encoder counts from where it is supposed to be, the controller command voltage output will
be:

Proportional gain X position error = Command voltage output
1.0 volt X 5 counts of error = 5.0 volts

A slingshot is a good example of how proportional gain works. Pull the rock
back to shoot (increase the position error) and the restoring force of the
elastic band increases (the command voltage output increases). The farther
back the rock is pulled, the greater the restoring force (the greater the
command voltage output), and the further the rock will fly.
Let the rock go, the elastic returns to (or near) its target, position error is
zero, and there is no more restoring force (command voltage = 0).

• Proportional gain (P)
• Integral gain (I)
• Derivative gain (D)

10

Derivative gain

Prepare to shoot by pulling back slowly on the rock and the water provides minimal resistance.
But let the rock go and the water will significantly reduce the velocity at which the rock travels.
The amount of dampening is proportional to the velocity of the rock.

In much the same way, the derivative term of the PID filter dampens the responsiveness of a
servo system by opposing a change in the position error.

Derivative gain is used to dampen overshoot and oscillation, which are the typical side affects
of proportional gain. Referring once again to the analogy of a slingshot. The dampening effects
of derivative gain are similar to shooting that same slingshot in a container of water.

11

Derivative gain dampens the responsiveness of a servo. This is accomplished by reducing the
torque/velocity command based on the amount of change in the position error from one servo
loop calculation to the next.

Without derivative gain, only mechanical friction is available to dampen the servo. It approaches the
target with too much force and overshoot occurs. With the addition of derivative gain not only is the
settling time reduced by 25 milliseconds, overshoot has been significantly reduced.

While derivative gain is typically associated only with dampening a servo it is possible for it to
actually increase servo instability. If the derivative gain term is calculated every servo loop it
may tend to fight against the properties of proportional gain. The interval between derivative gain
term calculations is set by defining the Derivative Sampling Period. For typical servo systems the
derivative term calculation interval should be increased to 2 (high friction servos) to 12 (high
inertial servos) servo loop updates.

Imagine manually rotating the shaft of a servo motor. The graphs below depict how the servo
system would respond. The first graph plots the response of a servo using only proportional
gain, the second graph demonstrates the benefits of adding derivative gain.

Output
 voltage

Time (msec)

0.0V

-2.0V

-1.0V

+2.0V

+1.0V

25 50 100 125 150 175

Command output voltage using
proportional gain only

At target

Output
 voltage

Time (msec)

0.0V

-2.0V

-1.0V

+2.0V

+1.0V

25 50 100 125 150 175

Command output voltage using both
proportional and derivative gain

At target

12

Integral gain

Near the end of a move, as the controller decelerates the axis (by reducing the torque/velocity
command output), the axis may stop short of the target due to friction in the mechanics. If only
proportional and derivative gains are used, the axis will remain short of the target, and the
torque/velocity command output will remain at a non zero value.

0
2
4
6
8

10
12
14
16

0 s
ec

.
2 s

ec
.

4 s
ec

.
6 s

ec
.

8 s
ec

.
10

 se
c.

Command
output
(volts)
Axis Velocity
(mm/sec.)

Following
error

This chart of command voltage, axis velocity, and following error demonstrates the problem caused
by friction. The controller attempts to decelerate the axis (time = 3 seconds through time = 10
seconds) but friction causes the axis to stop two and a half seconds early. The axis is short of the
target and the following error begins to increase.

Typically integral gain comes in to play only at the end of a move. It is used to push the axis
those last few counts to the target. Without integral gain the balance between accuracy,
repeatability, and servo stability would be almost impossible to maintain.

13

Integral gain provides a restoring force that increases over time. It is used to correct a static
position error at the end of a move.

In the previous example, friction caused the motor to stop moving prematurely. With the addition of
integral gain the axis will now reach the target.

0
2
4
6
8

10
12
14
16

0 s
ec

.
2 s

ec
.

4 s
ec

.
6 s

ec
.

8 s
ec

.
10

 se
c.

12
 se

c.
14

 se
c.

Command
output
(volts)
Axis Velocity
(mm/sec.)

Following
error

As in the previous example, at around 7.5 seconds system friction is greater than the drive current
and the motor stops. At this point the following error begins to increase because the controller is still
trying to move the axis to the target position.

The increasing following error causes the integral gain to increase the command output voltage
level. The axis resumes its motion until it reaches the target.

14

While integral gain is typically only used to correct a position error at the end of a move, it is a part
of every servo loop calculation. If the integral gain value is set too high it will cause an axis to
oscillate during the entire motion. This occurs because integral gain applies a restoring force as
a factor of time. The greater the integral gain value, the shorter the accumulated error time
factor, the greater the likelihood that integral gain will cause the controller to calculate an excessive
command output.

PID filter summary:

Integral gain sets the accumulated error time constant, in other words it defines how quickly the
controller will attempt to correct a static position error. However integral gain does not provide any
mechanism for setting or limiting the level of the command output. This is accomplished by setting
the Integration Limit. The value of the integration limit is used by the PID loop to calculate the level
of the command output that will be used to correct the static position error.

• Proportional gain is the primary term, it is what starts an axis moving. The
responsiveness of a servo (stiff or soft) is determined by proportional gain.

• Derivative gain acts to dampen the responsiveness of the servo.

• Increasing the Derivative Sampling Period for high performance servo controllers
improves system dampening and increases servo stability

• Integral gain is used to overcome friction. It moves the axis those last few encoder
counts to the target.

• Integration Limit sets the maximum command signal that can be applied by the
integral gain.

15

#5 – How do you tune a servo
As with most jobs you need the right tool, and the right tool for this job is our Servo Tuning program.
It is a Windows application program that allows the user to:

• Set PID values

 Actual position of the motor/load

• Set over travel limits
• Select Trapezoidal or S-curve velocity profiles
• Define trajectory parameters (maximum velocity, acceleration, and deceleration)
• Save tuning parameters to a file for later use
• Print the plot window and servo settings on a PC printer

One note before getting started: When tuning a servo you are defining how the servo system
responds to a given position error. Real world moves, which use the trajectory generator to
calculate a velocity profile, will be executed only after the appropriate proportional and derivative
gains have been determined. The proportional and derivative gain settings are determined while
executing very short moves known as step responses. With the trajectory generator disabled, the
PID filter step response commands an immediate change of position with no velocity profile. We
want to define and observe the response of the servo system when using only the proportional and
derivative terms of the PID filter.

• Set Move (Step Response) distances
• Capture and plot:

 Optimal position of the axis
 Following (position) error of the motor/load
 Torque/Velocity (DAC) command signal output level

16

Tuning a servo

With the controller installed in the PC, our Motion Control API installed, and the servo system
(amplifier, motor, and encoder) wired and tested using Motion Integrator, from the Windows Start
menu launch the Servo Tuning program:

Prior to beginning the servo tuning process make sure that you have accurately followed the
manufacturers recommended connection and setup procedures for the specific servo amplifier
being used. The servo tuning description that follows requires that the amplifier and motor are
working properly.

17

Servo Tuning Program Controls and Indicators

PID slide control
scaling buttons

Current
Position
Readout

Motor Enable
button & indicator

Axis Selector
button

Proportional gain, Integral
gain, and Derivative gain
slide controls

PID filter settings

Trajectory Generator
Enable & indicator
button

Position versus Time

plot window

Following error versus Time
plot window

DAC command output versus Time
plot window

Move motor buttons

Clear plot
displays Zero

Current
Position

18

Servo Tuning Program File Menu Options

Open plot data
point file

Save plots as a
data file

Load servo
settings from
MCAPI.ini file

Reset all settings to
default parameters

Select your PMC
controller model

Print step response
plots and servo
parameters

19

Servo Tuning Program Setup Menu Options

Set and edit servo settings
(PID, Vel/Accel/Decel,
Trapezoidal/S-curve,
Limits, Phasing, etc.)

Set User Units

Scale PID slider controls

Define Step response
parameters (Step distance,
Plot window time, Position
capture delay)

Define plot window
appearance

20

Getting Started

From the Setup Menu open
the Servo Setup Dialog box

PID Loop Rate should
be set to High

Over Travel Limits
should be enabled

Typical Derivative Sampling
Period is 0.00075 seconds.

For high inertia/low friction
servo systems the
Derivative Sampling period
should be between 0.00125
to 0.002 seconds.

Not applicable
at this time

Not applicable
at this time

Step #1 - Verifying Servo Setup Parameters

21

Step #2 – Set the Step Response distance and Plot window setup

From the Setup Menu open
the Test Setup Dialog box

Set the Step Response
distance. Typical distance
is 100 encoder counts.

Set the Plot window time
base (position record time).
Typical time is 500
milliseconds.

Define a position capture delay
time. A non zero value delays the
capturing of position data by n
milliseconds.

This feature is typically used to
zoom in and observe in detail
how well the axis settles at the
target.

For now leave this value at 0.

Select Plot Torque to enable the
DAC output plot window

22

Step #3 – Zoom in on Slide Controls to increase resolution
The Servo Tuning program defaults to setting the slide controls to 100% of the maximum gain
setting. Leaving the slide control upper limits at 100% will generally result in insufficient slide control
resolution.

Press the Zoom In (+) button to change the P, I, and D slide control scaling. Select the P slide
control zoom button until the upper limit is 3.13%. Set the I slide control upper limit to 0.2%. Set the
D slide control upper limit to 1.56%. Please note that these are just recommended initial settings.
The final slide control scaling will vary from axis to axis. Slide control scaling is a usability issue, it
has no bearing on the performance of the servo system.

P slide control
upper limit

I slide control
upper limit

D slide control
upper limit

23

Step #4 – Set initial PID values

Open the Servo Setup Dialog Box and set these initial PID parameters:
Proportional gain = 0.05
Derivative gain = 0.0
Derivative Sampling Period = 0.00075 (If high friction system decrease the sampling period to
0.00025. If High inertial system increase the sampling period to 0.0015.)
Integral gain = 0.0
Integration Limit = 50
Following Error = 1024

24

Select the On button
to turn on the axis
(start the PID loop)

Step #5 – Enable the axis

If no error conditions
are present the green
light will turn on

The Trajectory Generator must
be off. The values for
proportional and derivative gains
must be determined when
moving with just P and D control.
In other words no velocity profile
(max. velocity or ramping).

When the Trajectory Generator is
on all moves will use either
Trapezoidal or S-curve velocity
profiles.

25

Step #6 – Executing the first move

Selecting either of the Step buttons will cause the controller to attempt to move the motor. The
captured actual positions of the axis are displayed in the upper plot window. The DAC
(torque/velocity command) output of the controller is displayed in the lower plot window. Since the
Trajectory Generator is off there will be no following error plot (middle plot window).

Captured actual
positions of the
axis

Captured
DAC output

Select the
Step button
to move.

26

Step #7 – Setting the Proportional Gain
The goal is to find a proportional gain setting that causes the axis to get to, and then cross the
target 3 times (no more and no less). Any combination of Step Plus and or Step Minus moves is
OK.

For this servo system a proportional gain setting of
0.05 is too low. The axis never reaches the target
position (100).

This servo system is much more
responsive. With the same proportional
gain setting (0.05) the axis crosses the
target more than three times. The
proportional gain is too high.

27

If the Motor LED turns red and the motor moves in the wrong direction (negative command output
results in more negative encoder counts) the axis is reversed phased. The phasing can be changed
in software by selecting the Reverse Phase box in the Servo Tuner, Axis Setup dialog box, or by
issuing the appropriate MCCL command (PH), or C/C++ function (MCSetOutputPhase()) from your
own application application program. For a hardware solution, you can do the same thing by
swapping the A and B connections from the encoder to the motion controller.

Motor LED changes
from green to red

28

Axis crossed the target more than
3 times. Zero the position display,
reduce the proportional gain, and
move again.Axis did not reach the target. Zero

the position display, increase the
proportional gain, and move again

Axis crossed the target only twice.
Zero the position display, increase
proportional gain, and move again

Axis crossed the target three times.
Proportional gain value (0.026) is acceptable.

Here is a demonstration of the steps typically required to determine the correct proportional gain
setting.

29

Step #8 – Setting the Derivative Gain
Open the Servo Setup Dialog and verify the setting for the Derivative Sampling Period. The default
value (0.000250) can be used for systems with a great deal of friction, but for typical servo systems
it is recommended that the sampling period be set to 0.00075 seconds. With this setting the
comparison of the change in following error occurs once every 6 PID loops (an interval of .75
milliseconds).

Set the Derivative
Sampling Period

30

Once an appropriate proportional gain value has been selected the axis is observed overshooting
the target by about 65%. Use derivative gain to limit this overshoot to approximately 25%. The
greater the overshoot, the more responsive the servo but the more likely the axis is to become
unstable (oscillate). If the overshoot is reduced too much (less than 10%) the system will be over
dampened and the axis will tend to stop short of the target. Here is a demonstration of how the
proper derivative gain value is determined.

Overshoot = 65%

Overshoot is greater than 25%, zero the
position display, increase derivative
gain, and move the axis.

Overshoot is greater than 25%, zero the position
display, zoom out the derivative slide control,
increase derivative gain, and move the axis.

Overshoot = 50%

Overshoot is greater than 25%, zero the
position display, increase derivative gain,
and move the axis.

Overshoot = 35%

Overshoot
limit (125)

Overshoot = 25%, current
derivative gain setting
(0.2675) is acceptable

31

Symptoms of an over dampened servo system
In the days of slow servo loops (1, 2, and 5 mSec) an over dampened servo was easy to spot. It
typically moved slowly towards the target and would stop 5% to 15% short.

32

The processing power of today’s servo controllers provide a significant boost in servo loop rates,
which can complicate the identification of an over dampened servo.

The step response on the left side is the traditional over dampened servo system. The step
response on the right exhibits significant oscillation in the command output and a noise similar to
grinding is heard. A quick glance could result in an incorrect assumption, that the proportional gain
has been set too high.

In fact the gain settings for both step responses are exactly the same (P = 0.025, D=1.13). The
only difference is that prior to executing the second step response the Derivative Sampling Period
was reduced from 1 millisecond to 0.5 milliseconds. The oscillation was caused by the combination
of excessive derivative gain and short derivative sampling period. This combination causes a high
performance servo controller to overreact, resulting in a system that appears to have no dampening
at all.

33

Step #9 – Setting the Integral Gain
This is when we start to get to the good stuff. As discussed earlier, Integral gain is used to get the
axis to the target. Which means that we can now turn on the trajectory generator and start
executing actual moves.

But first open the Servo Setup Dialog and define Maximum Velocity, Acceleration, and Deceleration
values for the specific application. For this example application the desired maximum velocity is
100,000 encoder counts per second. The acceleration and deceleration rates are 150,000 encoder
counts per second per second.

Set the desired
Maximum Velocity

Set the desired
Acceleration and
Deceleration rates

34

Now open the Test Setup Dialog and enter the desired move distance and plot window display
period. For this example the move distance is 5000 encoder counts and the time period is 500
milliseconds.

Set the desired move
distance. This value can
be in encoder counts
(default units) or user
units.

Set the plot window
time period

35

Zero the position of the servo, turn on the Trajectory Generator and see how the servo performs.

Slowly increase the integral
gain until the axis is within 1
encoder count of the target
(5000)

Axis is now within 1 encoder
count of the target. Execute
a move.

The axis stopped short of
the target. Increase the
integral gain until the axis is
within 1 count of the target.

Axis is now within 1 encoder
count of the target. Execute
a move.

The axis reached and
settled within 1 count of the
target. The servo is now
tuned.

If increasing the integral gain fails to get the axis to the target, open the Servo Setup Dialog and
increase the Integration Limit.

36

Step #9 – Saving the tuning parameters
When the controller is reset or the computer power is cycled, all servo setup parameters are reset
to default values. After tuning the axis you need to save the servo setup parameters to a file so that
they can be reloaded at anytime. To save all of the values in the Servo Setup Dialog, open the File
menu and select Save All Axis Settings.

This will save the setup parameters to the MCAPI.INI file (in the Windows folder). These
parameters can now be used by any application program that uses PMC’s Motion Control API.

When using any PMC application program or demo, the setup parameters will be loaded
automatically if the File menu option Auto Initialize is selected.

To load the MCAPI.INI file setup parameters from a user’s application program call the MCAPI
function MCDLG_RestoreAxis(). For further details please refer to the MCAPI help file Mcdlg.hlp.

37

Analyzing the performance of the servo
Once the servo is tuned, the capture delay feature can be used to zoom in on a specific segment of
a move. In this example the settling time is of significant importance. By delaying the capturing of
positions by 400 milliseconds, and decreasing the plot window time period from 0.5 seconds to 0.3
seconds, the user can analyze how well the axis settles at the target.

Trajectory complete: after 440
msec’s the calculated optimal
position = the move target (5000).

Axis has settled (following error = 0).
Settling time = 210 msec’s.

The settling time can be reduced by:

1) Reducing the Integral gain and

2) Increasing the Proportional gain

Trajectory complete: after 440
msec’s the calculated optimal
position = the move target (5000).

Axis has settled (following error = 0).
Settling time reduced by 145 msec’s
to 65 msec’s.

38

This is the end of the:

Servo Tuning Tutorial

Visit us on the web at www.pmccorp.com

